Wiki source code of fibonacci-number

Last modified by Administrator on 2020/08/13 18:56

Show last authors
1 h1. Fibonacci Number Notations
2
3 In mathematics, The Fibonacci numbers are the sequence of numbers defined by the linear recurrence equation {html}\\(F_n=F_{n-1} + F_{n-2}\\){html} with {html}\\(F_1=F_2=1\\){html}.
4
5
6 h3. Semantic
7
8 - OpenMath's [combinat1/fibonacci|http://www.openmath.org/cd/combinat1.xhtml#Fibonacci]
9 - Fibonacci number in [wikipedia|http://en.wikipedia.org/wiki/Fibonacci_number]
10
11 ----
12
13 h3. Observations of the symbol
14
15 Put your observations here...
16
17 h4. English USA !fibonacci-en.png|align=right!
18 As found in [Bibliography|Census.Bibliography#discrete-math-ThomasKoshy], the sequence {html}\\(F_n\\){html} of Fibonacci numbers is defined by the recurrence relation. The picture on the right from page num. 269.
19 [Preview google book link|http://books.google.com/books?id=lUyet9XvDAIC&lpg=PA269&dq=fibonacci%20number&lr=&pg=PA269#v=onepage&q=fibonacci%20number&f=false]
20
21 \\
22
23 h4. German
24 !fibonacci-de.png|align=right! In [Bibliography|Census.Bibliography#kombinatorik-JacobsAndJungnickel], The recursion for the flog {html}\\(F_0, F_1,...\\){html} is the fibonacci-number as shown in the picture on the right from page num. 350.
25 [See google book link|http://books.google.com/books?id=HcyzopHFmw8C&lpg=PA350&dq=fibonacci%20zahlen&lr=&pg=PA350#v=onepage&q=fibonacci%20zahlen&f=false]
26
27 \\
28
29 h4. French !fibonacci-fr.png|align=right!
30 As found in [Bibliography|Census.Bibliography#algorithmesEtStructurs-Breguet], the French book shows the fibonacci-number at the end of page 41.
31 [Preview google book link|http://books.google.com/books?id=VzPemrpOoxQC&lpg=PT67&dq=Nombre%20de%20Fibonacci&lr=&pg=PT55#v=onepage&q=Nombre%20de%20Fibonacci&f=false]
32
33 \\
34
35 h4. Spanish
36 !fibonacci-sp.png|align=right! The example on the right shows the fibonacci-number. Find the example in the Spanish book [Matematicas para las ciencias aplicadas|Census.Bibliography#matematica-aplicadas]
37 [See google books link|http://books.google.com.eg/books?id=uxauLevnXxUC&lpg=PA170&ots=1pMGHCQ9Cq&dq=matem%C3%A1ticas%20coeficiente%20binomial&hl=en&pg=PA165#v=snippet&q=fibonacci&f=false]
38
39 \\
40
41 ----
42
43 h3. Encoding the observations of Fibonacci number
44 [See encodings|http://devdemo.activemath.org/mathbridge/tools/symbolpresentation.cmd?order=by+Theory&lang=x-all&fmt=html&clipCoordinate=0&omsource=%3COMOBJ%3E%0D%0A+++++++%3COMA%3E%0D%0A++++++++++%3COMS+name%3D%22Fibonacci%22+cd%3D%22combinat1%22%2F%3E%0D%0A++++++++++%3COMV+name%3D%22F%22%2F%3E%0D%0A++++++++++%3COMV+name%3D%22n%22%2F%3E%0D%0A++++++%3C%2FOMA%3E%0D%0A++++%3C%2FOMOBJ%3E%0D%0A&submit=View]
45
46 \\
47
48 ----
49