Hide last authors
Administrator 1.1 1 h1. Notations of identity
2
3 In mathematics, an identity function, is a function that always returns the same value that was used as its argument.
4
5 h3. Description of this symbol
6
7 - Identity in [openMath/fns1|http://www.openmath.org/cd/fns1.xhtml#identity], and in [MathML|http://www.w3.org/TR/MathML2/chapter4.html#contm.ident].
8 - identity in [mathWorld|http://mathworld.wolfram.com/IdentityFunction.html], and in [wikipedia|http://en.wikipedia.org/wiki/Identity_function].
9
10 ----
11
12 h3. Observations of identity
13
14 Put your observations here...
15
16 h4. German
17 !identity1-de.png|align=right! We find in the property on the right, id ~x~ is the identity element of the monoid of all functions from X to X.
18 It is shown in the German book [lineare Algebra|Census.Bibliography#lineareAlgebra-GerdFischer] in page 37, and it is called 'Identische Abbildung' in German context.
19 [Find the example in google books lik|http://books.google.com.eg/books?id=rUlGDEFCRxkC&lpg=PP1&dq=lineare%20algebra&as_brr=0&hl=en&pg=PA37#v=onepage&q&f=false].
20
21 !identity3-de.png|align=right!
22 Also on the right we find another example which represents the identity function.
23 Find the example in the German book [Mathematik Wirklich Versteheny|Census.Bibliography#MathematikWirklichVerstehen] in page number 207.
24
25 \\
26
27 h4. English
28 !identity1-en.png|align=right! In [the calculus book|Census.Bibliography#Calculus-withAnalyticGeometry] we find an identity function is represented in page 432.
29 [Go to the example in google books link|http://books.google.com/books?id=jTmuOwwGDwoC&lpg=PP1&pg=PA432#v=onepage&q&f=false].
30
31 \\
32
33 ----
34
35 h3. Encoding the observations of identity
36 - [See encodings|http://devdemo.activemath.org/mathbridge/tools/symbolpresentation.cmd?order=by+Theory&lang=x-all&fmt=html&clipCoordinate=7&omsource=+%3COMOBJ%3E%0D%0A++++++++++%3COMS+cd%3D%22fns1%22+name%3D%22identity%22+%2F%3E%0D%0A++++++++%3C%2FOMOBJ%3E&submit=View]
37
38 - [See encodings|http://devdemo.activemath.org/mathbridge/tools/symbolpresentation.cmd?order=by+Theory&lang=x-all&fmt=html&clipCoordinate=10&omsource=%3COMOBJ%3E%0D%0A++++++++++++%3COMA%3E%0D%0A++++++++++++++%3COMS+name%3D%22eq%22+cd%3D%22relation1%22%2F%3E%0D%0A++++++++++++++%3COMA%3E%0D%0A++++++++++++++++%3COMS+name%3D%22nthdiff%22+cd%3D%22calculus1%22%2F%3E%0D%0A++++++++++++++++%3COMA%3E%0D%0A++++++++++++++++++%3COMS+name%3D%22unary_minus%22+cd%3D%22arith1%22%2F%3E%0D%0A++++++++++++++++++%3COMI%3E1%3C%2FOMI%3E%0D%0A++++++++++++++++%3C%2FOMA%3E%0D%0A++++++++++++++++%3COMA%3E%0D%0A++++++++++++++++++%3COMS+name%3D%22compose%22+cd%3D%22fns1%22%2F%3E%0D%0A++++++++++++++++++%3COMV+name%3D%22f%22+%2F%3E%0D%0A++++++++++++++++++%3COMV+name%3D%22f%22+%2F%3E%0D%0A++++++++++++++++%3C%2FOMA%3E%0D%0A++++++++++++++%3C%2FOMA%3E%0D%0A++++++++++++++%3COMV+name%3D%22id%22+%2F%3E%0D%0A++++++++++++%3C%2FOMA%3E%0D%0A++++++++++%3C%2FOMOBJ%3E&submit=View]
39 - [See encodings|http://devdemo.activemath.org/mathbridge/tools/symbolpresentation.cmd?order=by+Theory&lang=x-all&fmt=html&clipCoordinate=1&omsource=+%3COMOBJ%3E%0D%0A++++++++++++++%3COMA%3E%0D%0A++++++++++++++++%3COMS+cd%3D%22fns1%22+name%3D%22identity%22+%2F%3E%0D%0A++++++++++++++++%3COMV+name%3D%22a%22+%2F%3E%0D%0A++++++++++++++%3C%2FOMA%3E%0D%0A++++++++++++%3C%2FOMOBJ%3E&submit=View]
40
41 \\
42
43 ----
44
45
46
47
48
49
50