Wiki source code of fibonacci-number
Last modified by Administrator on 2020/08/13 18:56
Hide last authors
author | version | line-number | content |
---|---|---|---|
![]() |
1.1 | 1 | h1. Fibonacci Number Notations |
2 | |||
3 | In mathematics, The Fibonacci numbers are the sequence of numbers defined by the linear recurrence equation {html}\\(F_n=F_{n-1} + F_{n-2}\\){html} with {html}\\(F_1=F_2=1\\){html}. | ||
4 | |||
5 | |||
6 | h3. Semantic | ||
7 | |||
8 | - OpenMath's [combinat1/fibonacci|http://www.openmath.org/cd/combinat1.xhtml#Fibonacci] | ||
9 | - Fibonacci number in [wikipedia|http://en.wikipedia.org/wiki/Fibonacci_number] | ||
10 | |||
11 | ---- | ||
12 | |||
13 | h3. Observations of the symbol | ||
14 | |||
15 | Put your observations here... | ||
16 | |||
17 | h4. English USA !fibonacci-en.png|align=right! | ||
18 | As found in [Bibliography|Census.Bibliography#discrete-math-ThomasKoshy], the sequence {html}\\(F_n\\){html} of Fibonacci numbers is defined by the recurrence relation. The picture on the right from page num. 269. | ||
19 | [Preview google book link|http://books.google.com/books?id=lUyet9XvDAIC&lpg=PA269&dq=fibonacci%20number&lr=&pg=PA269#v=onepage&q=fibonacci%20number&f=false] | ||
20 | |||
21 | \\ | ||
22 | |||
23 | h4. German | ||
24 | !fibonacci-de.png|align=right! In [Bibliography|Census.Bibliography#kombinatorik-JacobsAndJungnickel], The recursion for the flog {html}\\(F_0, F_1,...\\){html} is the fibonacci-number as shown in the picture on the right from page num. 350. | ||
25 | [See google book link|http://books.google.com/books?id=HcyzopHFmw8C&lpg=PA350&dq=fibonacci%20zahlen&lr=&pg=PA350#v=onepage&q=fibonacci%20zahlen&f=false] | ||
26 | |||
27 | \\ | ||
28 | |||
29 | h4. French !fibonacci-fr.png|align=right! | ||
30 | As found in [Bibliography|Census.Bibliography#algorithmesEtStructurs-Breguet], the French book shows the fibonacci-number at the end of page 41. | ||
31 | [Preview google book link|http://books.google.com/books?id=VzPemrpOoxQC&lpg=PT67&dq=Nombre%20de%20Fibonacci&lr=&pg=PT55#v=onepage&q=Nombre%20de%20Fibonacci&f=false] | ||
32 | |||
33 | \\ | ||
34 | |||
35 | h4. Spanish | ||
36 | !fibonacci-sp.png|align=right! The example on the right shows the fibonacci-number. Find the example in the Spanish book [Matematicas para las ciencias aplicadas|Census.Bibliography#matematica-aplicadas] | ||
37 | [See google books link|http://books.google.com.eg/books?id=uxauLevnXxUC&lpg=PA170&ots=1pMGHCQ9Cq&dq=matem%C3%A1ticas%20coeficiente%20binomial&hl=en&pg=PA165#v=snippet&q=fibonacci&f=false] | ||
38 | |||
39 | \\ | ||
40 | |||
41 | ---- | ||
42 | |||
43 | h3. Encoding the observations of Fibonacci number | ||
44 | [See encodings|http://devdemo.activemath.org/mathbridge/tools/symbolpresentation.cmd?order=by+Theory&lang=x-all&fmt=html&clipCoordinate=0&omsource=%3COMOBJ%3E%0D%0A+++++++%3COMA%3E%0D%0A++++++++++%3COMS+name%3D%22Fibonacci%22+cd%3D%22combinat1%22%2F%3E%0D%0A++++++++++%3COMV+name%3D%22F%22%2F%3E%0D%0A++++++++++%3COMV+name%3D%22n%22%2F%3E%0D%0A++++++%3C%2FOMA%3E%0D%0A++++%3C%2FOMOBJ%3E%0D%0A&submit=View] | ||
45 | |||
46 | \\ | ||
47 | |||
48 | ---- | ||
49 |