Wiki source code of in
Last modified by Administrator on 2020/08/13 18:56
Show last authors
author | version | line-number | content |
---|---|---|---|
1 | h1. Notations of in | ||
2 | |||
3 | The in symbol represents the set inclusion relation. It has two arguments, an element and a set. It is used to denote that the element is in the given set. | ||
4 | |||
5 | h3. Descriptions of this symbol | ||
6 | |||
7 | - OpenMath's [set1/in|http://www.openmath.org/cd/set1.xhtml#in] | ||
8 | - See 'in' in [MathML3|http://www.w3.org/TR/MathML3/chapter4.html#contm.in] | ||
9 | - MathWorld seems not to describe it | ||
10 | - Wikipedia's [Set_membership|http://en.wikipedia.org/wiki/Set_membership] | ||
11 | |||
12 | ---- | ||
13 | |||
14 | h3. Observations of the symbol | ||
15 | |||
16 | Put your observations here... | ||
17 | |||
18 | h4. English | ||
19 | !in1-en.png|align=right! We find an example on the right from the English book [Discrete mathematics with applications|Census.Bibliography#discrete-math-ThomasKoshy] shows that _x_ is an any element in _X_ . | ||
20 | [Find the example in page number 120 in google book links|http://books.google.com/books?id=90KApidK5NwC&lpg=PA269&dq=fibonacci%20number&lr&pg=PA120#v=onepage&q&f=false] | ||
21 | |||
22 | \\ | ||
23 | |||
24 | h4. German | ||
25 | !in1-de.png|align=right! In the German book [Lineare Algebra|Census.Bibliography#lineareAlgebra-KowalskyMichler] we find the symbol which denotes any element in a set in page number 5, and it is called 'Element' in German context. | ||
26 | [Go directly to the example in google book links|http://books.google.com/books?id=UT492jL2xEwC&lpg=PA307&dq=Gr%C3%B6%C3%9Fter%20gemeinsamer%20Teiler&pg=PA5#v=onepage&q&f=false] | ||
27 | |||
28 | \\ | ||
29 | |||
30 | h4. Dutch | ||
31 | !in1-nl.png|align=right! Here we find also an example represents the IN symbol in page 93 in the math book [Inzien en bewijzen|Census.Bibliography#InzienEnBewijzen-EijckVisser] from Amsterdam university in Dutch context. | ||
32 | [Find the book in google books link|http://books.google.com/books?id=tg5VSqCqFF4C&lpg=PA31&dq=Grootste%20gemene%20deler&pg=PA93#v=onepage&q&f=false] | ||
33 | |||
34 | \\ | ||
35 | |||
36 | h4. Finnish | ||
37 | !in1-fi.png|align=right! The math book [MAOL-taulukot|Census.Bibliography#MAOL-taulukot-Otava2005] shows in this example that _a_ is an any element in _A_ in page number 8, | ||
38 | and it is called 'Alkio' in Finnish context. | ||
39 | [Download and Preview the book|http://matriisi.ee.tut.fi/~miilumak/material/] | ||
40 | |||
41 | |||
42 | \\ | ||
43 | |||
44 | ---- | ||
45 | |||
46 | h3. Encoding the observations of in | ||
47 | - [See encodings|http://devdemo.activemath.org/mathbridge/tools/symbolpresentation.cmd?order=by+Theory&lang=x-all&fmt=html&clipCoordinate=0&omsource=+%3COMOBJ%3E%0D%0A++++++%3COMA%3E%0D%0A++++++++%3COMS+cd%3D%22set1%22+name%3D%22in%22+%2F%3E%0D%0A++++++++%3COMV+name%3D%22a%22+%2F%3E%0D%0A++++++++%3COMV+name%3D%22B%22+%2F%3E%0D%0A++++++%3C%2FOMA%3E%0D%0A++++%3C%2FOMOBJ%3E&submit=View] | ||
48 | - [See encodings|http://devdemo.activemath.org/mathbridge/tools/symbolpresentation.cmd?order=by+Theory&lang=x-all&fmt=html&clipCoordinate=0&omsource=%3COMOBJ%3E%3COMS+cd%3D%22set1%22+name%3D%22in%22+%2F%3E%3C%2FOMOBJ%3E&submit=View] | ||
49 | |||
50 | \\ | ||
51 | |||
52 | ---- |